INDIAN MARITIME UNIVERSITY
 (A Central University Government of India)
 END SEMESTER EXAMINATIONS-June/July 2019
 B.Tech (Marine Engineering)
 Semester-III
 Computational Mathematics (UG11T1301/UG11T2301)

Date: 09-07-2019 Duration: $\mathbf{3}$ hrs	
Note:	Maximum Marks: 100 Pass Marks: $\mathbf{5 0}$
	i. Use of approved type of scientific calculator is permitted.
	ii. The symbols have their usual meanings.

Section-A(3x10=30 Marks)

(All Questions are Compulsory)

Q. 1 (a) What are the normal equations to fit the parabola $y=a+b x+c x^{2}$.
(b) Prove $x+(x . y)=x$
(c) Using Newton's Forward Difference, find the polynomial for

$x:$	0	1	2	3
$f(x):$	1	2	1	10

(d) Evaluate $\Delta\left(\tan ^{-1} x\right)$
(e) Prove $\quad \Delta^{3} y_{2}=\nabla^{3} y_{5}$.
(f) The two Regression equations of the variables x and y are $x=19.13-0.87 y$
and $y=11.64-0.50 x$. find mean of x and mean of y.
(g) Construct the Truth Table for $(p \rightarrow q) \wedge(q \rightarrow p)$.
(h) Evaluate $\int_{0}^{1} \frac{d x}{1+x}$ using Trapezoidal rule, taking $h=0.2$
(i) Explain about Bubble sort problem with suitable example.
(j) Solve $u_{n+2}-4 u_{n+1}+4 u_{n}=2^{n}$

Section - B (14 x5=70 Marks)

(Answer any 5 of the following)
Q. 2 (a) Show that $(x \vee y) \wedge(y \vee z) \wedge(z \vee x)=(x \wedge y) \vee(y \wedge z) \vee(z \wedge x)$. (7 marks)
(b Simplify $x \vee y \wedge y \vee z \wedge y \vee z^{\prime}$.
(7 marks)
Q. 3 (a) The table gives the distances in nautical miles of the visible horizon for the given heights in feet above the earth's surface

$x=$ height:	100	150	200	250	300	350	400
y =distance:	10.63	13.03	15.04	16.81	18.42	19.90	21.27

Find the value of y when $x=218 f t$
(b) Using Lagrange's Formula, find the value of y when $x=10$ for

$\mathrm{x}:$	5	6	9	11
$\mathrm{y}:$	12	13	14	16

Q. 4 (a) Given that

$\mathrm{x}:$	1.0	1.1	1.2	1.3	1.4	1.5	1.6
$\mathrm{y}:$	7.989	8.403	8.781	9.129	9.451	9.750	10.031

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.1$
(b) Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using Simpson's $3 / 8^{\text {th }}$ rule, taking $h=\frac{1}{6}$. (7 marks)
Q. 5 (a) Fit a straight line $y=a+b x$ using method of least squares for the data

$x:$	1	3	4	6	8	9	11	14
$y:$	1	2	4	4	5	7	8	9

(7 marks)
(b) Find the least squares fit of the form $y=a_{0}+a_{1} x^{2}$ using method of least squares for the data

$x:$	-1	0	1	2	
$y:$	2	5	3	0	
(7 marks)					

Q. 6 (a) Ten participants in a contest are ranked by two judges as follows:

$x:$	1	6	5	10	3	2	4	9	7	8
$y:$	6	4	9	8	1	2	3	10	5	7

Calculate the rank correlation coefficient ρ
(7 marks)
(b) Find the Correlation Coefficient between x and y from the given data

$x:$	55	56	58	59	60	60	62
$y:$	35	38	38	39	44	43	45

(7 marks)
Q. 7
Q. 8
(a) Solve $y_{n+2}-2 y_{n+1}+y_{n}=n^{2} 2^{n}$
(b) In a partially destroyed laboratory record, only the lines of regression of y on x and x on y are available as $4 x-5 y+33=0$ and $20 x-9 y=107$ respectively. Calculate \bar{x}, \bar{y} and the coefficient of correlation between x and y.
(7 marks)
(a) Write an algorithm to find an exponential series e^{x}
(7 marks)
(b) Write an algorithm to find the factorial value of n numbers. (7 marks)

