INDIAN MARITIME UNIVERSITY

(A Central University Government of India) END SEMESTER EXAMINATIONS-June/July 2019 B.Tech (Marine Engineering) Semester-III

Computational Mathematics (UG11T1301 / UG11T2301)

Date: 09-07-2019	Maximum Marks: 100
Duration: 3 hrs	Pass Marks: 50

Note: i. Use of approved type of scientific calculator is permitted. ii. The symbols have their usual meanings.

Section-A(3x10=30 Marks)

(All Questions are Compulsory)

- Q.1 (a) What are the normal equations to fit the parabola $y = a + bx + cx^2$.
 - (b) Prove x + (x, y) = x
 - (c) Using Newton's Forward Difference, find the polynomial for

x:	0	1	2	3
f(x):	1	2	1	10

- (d) Evaluate $\Delta(\tan^{-1}x)$
- (e) Prove $\Delta^3 y_2 = \nabla^3 y_5$.
- (f) The two Regression equations of the variables x and y are x = 19.13 0.87yand y = 11.64 - 0.50x, find mean of x and mean of y.
- (g) Construct the Truth Table for $(p \rightarrow q) \land (q \rightarrow p)$.
- (h) Evaluate $\int_0^1 \frac{dx}{1+x}$ using Trapezoidal rule, taking h = 0.2
- (i) Explain about Bubble sort problem with suitable example.
- (j) Solve $u_{n+2} 4 u_{n+1} + 4u_n = 2^n$

Section – B (14 x5=70 Marks)

(Answer any 5 of the following)

0.2	(a)	Show that $(x \lor y) \land (y \lor z) \land (z \lor x) = (x \land y) \lor (y \land z) \lor (z \land x)$. (7 marks)
Q.2	(4)		1

(7 marks) Simplify $x \lor y \land y \lor z \land y \lor z'$. (b

The table gives the distances in nautical miles of the visible horizon for Q.3 (a) the given heights in feet above the earth's surface

x = he	eight:	100	150	200	25	50	300	350		400	
y=di	stance:	10.63	13.03	15.04	- 16	5.81	18.42	2 19.9	0	21.27	
Find	the value	e of y w	hen x =	= 218 <i>ft</i>					(7	marks	5)
(b)	Using L	agrang	e's Form	nula, fir	nd th	e valu	ue of y	when x	= 1	0 for	
	x :		5	6		9)	11			
	y :		12	13		14	4	16	(7 marl	<s)< td=""></s)<>
(a) x	Given t : 1.0	hat 1.	1 1	L.2	1.3	1	.4	1.5	1.6	5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.2 1.3		1.4		1.5 9.750	1.6) 031	
$y = \frac{1}{2}$											
F	ind $\frac{dy}{dx}$ a	nd $\frac{d^2 y}{dx^2}$	at $x =$	1.1						(71	marks
(b)	Evaluat	e $\int_0^1 \frac{dx}{1+x}$	- using	g Simps	son's	3/8 th	rule,	taking <i>h</i>	$=\frac{1}{6}$	(7 n	narks)
(a)	Fit a sti	raight li	ne $y = a$	u + bx L	using	meth	nod of	least sq	uare	es for t	he dat
	x: 1	3	4	6 8	8	9	11	14			
	y: 1	2	4	4 !	5	7	8	9			
	,		,								
	(/ mark	S)								

Find the least squares fit of the form $y = a_0 + a_1 x^2$ using method of (b) least squares for the data

x :	-1	0	1	2				
y :	2	5	3	0				
(7 marks)								

Q.4

Q.5

(a) Ten participants in a contest are ranked by two judges as follows:

x :	1	6	5	10	3	2	4	9	7	8
y :	6	4	9	8	1	2	3	10	5	7

Calculate the rank correlation coefficient ρ

(7 marks)

(b) Find the Correlation Coefficient between *x* and *y* from the given data

x :	55	56	58	59	60	60	62	
y :	35	38	38	39	44	43	45	(7 marks)

Q.7 (a) Solve
$$y_{n+2} - 2y_{n+1} + y_n = n^2 2^n$$
 (7 marks)

(b) In a partially destroyed laboratory record, only the lines of regression of y on x and x on y are available as 4x - 5y + 33 = 0 and 20x - 9y = 107 respectively. Calculate \bar{x}, \bar{y} and the coefficient of correlation between x and y. (7 marks)

Q.8 (a) Write an algorithm to find an exponential series
$$e^x$$

(7 marks)

(b) Write an algorithm to find the factorial value of n numbers. (7 marks)

Page 3 of 3

Q.6

•